LED Drivers

COMFORTLINE DIP SWITCH I-R2

187124

Typical Applications

Built-in in linear luminaires for

- Industry lighting
- Office lighting

Comfortline DIP switch I-R2

- SELECTABLE OUTPUT CURRENT VIA DIP SWITCH

VERY LOW RIPPLE CURRENT: < 2\%

LONG SERVICE LIFE: UP TO 100,000 HRS.

PRODUCT GUARANTEE: 5 YEARS

ComfortLine
 DIP switch I-R2

Product features

- Linear casing shape

Functions

- Selectable current output via DIP switch

Electrical features

- Mains voltage: $220-240 \mathrm{~V} \pm 10 \%$
- Mains frequency: $50-60 \mathrm{~Hz}$
- Push-in terminals: 0.5-1.5 mm²
- Power factor at full load: 0.96
- Max. working voltage (UOUT): 350 V
- Secondary side switching of LED modules is not allowed.

Safety features

- Protection against transient main peaks up to 1 kV (between L and N) and up to 2 kV (between L / N and PE)
- Electronic short-circuit protection
- Overload protection
- Protection against "no load" operation
- Degree of protection: IP20
- Protection class I

Packaging units

Ref. No.	Packaging unit		
	Pieces per box	Boxes per pallet	Weight g
187124	30	64	176

IP20

110

Senice IVfite
100000
(z) hours
:---:
$5_{\text {years }}$

Applied standards

- EN 61347-1
- EN 61347-2-13
- EN 62384
- EN 55015
- EN 61547
- EN 61000-3-2

Dimensions

- Casing: M7.1

- Length: 280 mm
- Width: 30 mm
- Height: 21 mm

Product guarantee

- 5 years
- The conditions for the Product Guarantee
of the Vossloh-Schwabe Group shall apply as
published on our homepage
(www.vossloh-schwabe.com)
We will be happy to send you these conditions upon
request.

Electrical characteristics

Rated output W	Type	Ref. No.	$\begin{aligned} & \text { Voltage } \\ & 50-60 \mathrm{~Hz} \\ & \mathrm{~V} \end{aligned}$	Mains current mA	Inrush current A / $\mu \mathrm{s}$	Current output DC $\mathrm{mA}(\pm 5 \%)$	Voltage output DC (V)	$\begin{aligned} & \text { THD } \\ & \text { at full load } \\ & \% \text { (230 V) } \end{aligned}$	Efficiency at full load $\%(230 \mathrm{~V})$	$\begin{aligned} & \text { Ripple } \\ & 100 \mathrm{~Hz} \\ & \% \end{aligned}$
42-105	ECXe 500.484	187124	220-240	600-550	46/318	350	120-300	< 7	96	<2
48-120						400	120-300			
54-125						450	120-278			
60-125						500	120-250			

Maximum ratings

Exceeding the maximum ratings can lead to reduction of service life or destruction of the drivers.

Ref. No.	Ambien range ${ }^{\circ} \mathrm{C}$ min.	ature ${ }^{\circ} \mathrm{C}$ max	Opero range \% min.	idity \% max.	Storage range ${ }^{\circ} \mathrm{C}$ min.	ature ${ }^{\circ} \mathrm{C}$ max.	Storag range \% min.	idity \% max.	Max. operation temperature at tc point ${ }^{\circ} \mathrm{C}$	Degree of protection
187124	-25	+50	5	60	-40	+85	5	95	+70	IP20

Expected service life time

DIP switch settings

at operation temperatures at t_{c} point

Operation current	Ref. No. 187124	
All	$60^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$
hrs.	100,000	50,000

Pin 1	Pin 2	Operation current mA
OFF	OFF	350
ON	OFF	400
OFF	ON	450
ON	ON	500

Product labels

$\begin{aligned} & \mathbf{\square}\left(\frac{1}{\theta}\right. \\ & \mathbf{\square} \\ & \mathbf{n} \end{aligned}$	INPUT$\begin{aligned} \mathbf{U N}_{\mathbf{N}} & =\mathbf{2 2 0} \ldots . .240 \mathrm{~V} \sim \\ \mathbb{I}_{\mathrm{N}} & =600 \ldots 550 \mathrm{~mA} \\ \mathrm{f}_{\mathrm{N}} & =50 \ldots 60 \mathrm{~Hz} \\ \mathrm{I} & =0,99 \end{aligned}$	Vossloh-Schwabe Deutschland GmbH Hohe Steinert 8, D-58509 Lüdenscheid Electronic converter for LED Type ECXe 500.484 Ref.-No. 187124 Made in Serbia (Europe)	EN $61347-1$EN $61347-2.13$EN 623847EN 55015EN 610003.2	OUTPUT - .-								tc	$\begin{aligned} & \text { LED }+ \text { ■ } \\ & \text { LED-■ } \end{aligned}$
				Pin1	Pin2	Irated m A	Urated (V)	Pated $/$ W	Uout (V)	ta $\left.{ }^{\circ} \mathrm{C}\right)$	toc ${ }^{\circ} \mathrm{C}$)		
				Off	OFF	350	120... 300	105	<350	-25...50	70		
				ON	OFF	400	120... 300	120					
				OfF	ON	450	120... 278	125					
				ON	ON	500	120...250	125					

Typ. performance graphs for 187124 / Type ECXe 500.484

Safety functions

- Transient mains peaks protection:

Values are in compliance with EN 61547
(interference immunity).
Surges between $\mathrm{L}-\mathrm{N}$: up to 1 kV
Surges between L/N-PE: up to 2 kV

- Short-circuit protection: The control gears are protected against
permanent short-circuit with automatic restart function.
- Overload protection: The control gears only work in range of rated output power and voltage problemfree. Please check before switch-on mains power supply that the selected LED load is suitable (see Electrical Characteristics on data sheet).
- No load operation: The control gear is protected against no load operation (open load).
- If any of the above mentioned safety functions will be triggered, disconnect the control gear from the power supply then find and eliminate the cause of the problem.

Output voltage (UOUT)

According to EN 61347-1, UOUT indicates which voltage can occur at the output terminals directly or between the output terminals and the PE terminal of the LED driver. This value is given for non-insulated drivers.
The used LED module must have an insulation voltage that is at least as high as the specified UOUT voltage of the driver.

Leakage current

Leakage currents are present in all electronic converters or luminaires with PE connection and must be observed especially when using non-insulated LED drivers.
The PCB surfaces of LED modules form a capacitance with grounded LED aluminum circuit boards, heat sinks or mounting plates. This leads to capacitive leakage currents between the connection poles of the LED (+ and -) and the PE terminal. These capacitances should be kept as small as possible, since they are responsible for a possible glowing or flickering of the LEDs in standby mode. In extreme cases, the maximum permissible leakage current of the luminaire according to EN 60598 paragraph 10.3 may be exceeded. The leakage current is also relevant when using RCD circuit breakers.

Assembly and Safety Information

Installation must be carried out under observation of the relevant regulations and standards. Installation must be carried out in a voltage-free state (i.e. disconnection from the mains). The following advices must be observed; non-observance can result in the destruction of the LED drivers, fire and/or other hazards.

Mandatory regulations

- DIN VDE 0100
- EN 60598-1

Mechanical mounting

- Mounting position:

Built-in: Any position inside a luminaire is allowed.

- Mounting location: LED drivers are designed for integration into luminaires or comparable devices.
Installation in outdoor luminaires: degree of protection for luminaire with water protection rate ≥ 4 (e.g. IP54 required).
- Degree of protection: IP20
- Clearance: Min. 0.10 m from walls. ceilings and insulation
- Surface:
- Heat transfer:
- Fastening:

Solid and plane surface for optimum heat dissipation required.
If the driver is destined for installation in a luminaire. sufficient heat transfer must be ensured between the driver and the luminaire casing.
LED drivers should be mounted with the greatest possible clearance to heat sources.
During operation. the temperature measure at the driver's tc point must not exceed the specified maximum value.
Using M4 screws in the designated holes

Electrical installation

- Connection
terminals:
- Stripped length:
- Wiring:
- Polarity:
- Secondary load:

Push-in terminals for rigid conductors with a section of $0.5-1.5 \mathrm{~mm}^{2} ; A W G 20-16$ 8-9 mm
The mains conductor within the luminaire must be kept short (to reduce the induction of interference).
Mains and lamp conductors must be kept separate and if possible should not be laid in parallel to one another.
Please ensure the correct polarity of the leads prior to commissioning. Reversed polarity can destroy the modules.
The sum of forward voltages of LED loads has to be within the tolerances which are mentioned in the table "Electrical Characteristics" in this data sheet.

- Wiring diagram:

Selection of automatic cut-outs for VS LED drivers

- Dimensioning automatic cut-outs

High transient currents occur when an LED driver is switched on because the capacitors have to load. Ignition of LED modules occurs almost simultaneously. This also causes a simultaneous high demand for power. These high currents when the system is switched on put a strain on the automatic conductor cut-outs. which must be selected and dimensioned to suit.

- Release reaction

The release reaction of the automatic conductor cut-outs comply with VDE 0641. part 11. for B. C characteristics. The values shown in the following tables are for guidance purposes only and are subject to system-dependent change.

- No. of LED drivers

The maximum number of VS LED drivers applies to cases where the devices are switched on simultaneously. Specifications apply to single-pole fuses. The number of permissible drivers must be
reduced by 20% for multi-pole fuses. The considered circuit impedance equals $400 \mathrm{~m} \Omega$ (approx. 20 m [$2.5 \mathrm{~mm}^{2}$] of conductor from the power supply to the distributor and a further 15 m to the luminaire).

Type	Ref. No.	Automatic cut-out type and possible no. of VS drivers pcs.						
Automatic cut-out type	B 10 A	B 13 A	B 16 A	C 10 A	C 13 A	C 16 A		
ECXe 500.484	$\mathbf{1 8 7 1 2 4}$	5	7	8	9	11	14	

- To limit capacitive inrush currents the current carrying capacity of each circuit breaker (fuse) can be increased with the help of our ESB (Ref. No.: 149820, 149821, 149822) inrush current limiters.

