LED LINEAR ALLROUND - 5050 GEN. 3

2x6 FOR RECTANGULAR IP OPTICS

LED LINEAR ALLROUND - 5050 GEN. 3 - 2x6 FOR RECTANGULAR IP OPTICS

WU-M-631-SA/xx

These modules were designed for built-in into luminaire casings. They enable a modular luminaire design.

The modules are available in 3 white colour tones.

Typical Applications (depending on the choice of optics)

- Integration in luminaires
- Street lighting, urban street lighting
- Tunnel lighting
- Flood and area lighting
- Indoor lighting
- Industrial lighting for:
 - Production halls
 - Warehouses
- Lighting for sports facilities

LED Linear Allround - 5050 Gen. 3 - 2x6

- HIGHLY EFFICIENT: UP TO 217 LM/W AT Tp = 60 °C, I_F = 350 mA
- FLEXIBLE LIGHT DISTRIBUTION BY VARIOUS ATTACHMENT OPTICS
- INITIAL COLOUR ACCURACY: 5 SDCM
- ON-BOARD SURGE PROTECTION UP TO 10 KV (IN COMBINATION WITH VS STREETLIGHT DRIVERS)
- ZHAGA-COMPLIANT MOUNTING DIMENSION (ACC. TO BOOK 19)
- ENEC AND VDE
 (ACC. TO EN 62031)

LED Linear Allround 5050 Gen. 3 – 2x6 for rectangular IP optics

Technical Notes

• LED built-in module for integration into luminaires

- 12 high-efficiency High Power LEDs
- Dimensions (excl. optics) LxWxH 12 LEDs: 146x44.4x5 mm
- Push-in terminals for quick and simple wiring
- Design for optimum thermal management
- Degree of protection: IPOO
- ESD protection class 3 (up to 8 kV)
- NTC resistor for external driver feedback on request

Electrical Characteristics

at $t_p = 60 \, ^{\circ}\text{C}$

Туре	No.	Typ. voltage	DC				Temperature	Typ. power consumption						
	of	350 mA	500 mA	700 mA	1050 mA	1400 mA	coefficient	350 mA	500 mA	700 mA	1050 mA	1400 mA		
	LEDs	V	V	V	V	V	mV/K	W	W	W	W	W		
WU-M- 631-SA	12	32.7	33.3	34.0	35.3	36.5	-9.5	11.4	16.6	23.8	37.1	51.0		

Maximum Ratings

Exceeding the maximum ratings can lead to destruction of the module.

Туре	Operation current	Operation temperature r	ange at t _c point	Storage temperat	ture range	Max. allowed repetitive peak current
	mA	°C min.	°C max.	°C min.	°C max.	mA
All types	≤ 1050	-30	+85	-40	+85	2000
	≤ 1400 –30		+75	-40	+85	2000

Operating Life

Lumen	Operating life in hours at stated t _c point temperature												
degradation	$l_f \le 350 \text{ mA to}$	lf 700 mA		If 1050 mA			I _f 1400 mA						
	60 °C	70° C	85 °C	60 °C	70° C	85 °C	60 °C	70° C	85 °C				
L90/B10	> 102,000	> 102,000	> 102,000	> 102,000	> 102,000	> 87,000	> 102,000	> 102,000	> 79,000				
L80/B10	> 102,000	> 102,000	> 102,000	> 102,000	> 102,000	> 102,000	> 102,000	> 102,000	> 102,000				
L70/B10	> 102,000	> 102,000	> 102,000	> 102,000	> 102,000	> 102,000	> 102,000	> 102,000	> 102,000				

These values do not refer to the colour temperature. | Lxx/Byy (lumen maintenance at xx%, failure rate yy%)

The values contained in this data sheet can change due to technical innovations. Any such changes will be made without separate notification.

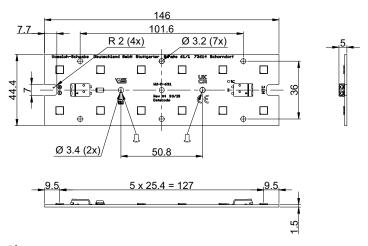
at $t_p = 60 \, ^{\circ}\text{C}$, $CRI^{**} \ge 70$

Туре	Ref. No.	Colour	Correl.	Luminous flu	uminous flux* (lm) and typ. efficiency (lm/W)									
			colour	350 mA	350 mA		500 mA		700 mA		1050 mA			
			temp.	typ.	typ.	typ.	typ.	typ.	typ.	typ.	typ.	typ.	typ.	
			K	lm	lm/W	lm	lm/W	lm	lm/W	lm	lm/W	lm	lm/W	
WU-M-631-SA-722	573218	warm white	2200	2105	184	2935	1 <i>7</i> 6	3995	168	5745	155	7365	144	
WU-M-631-SA-727	5 7 3181	warm white	2700	2310	202	3215	193	4380	184	6300	170	8080	158	
WU-M-631-SA-730	5 7 3140	warm white	3000	2380	208	3310	199	4510	189	6485	175	8315	163	
WU-M-631-SA-740	5 7 3141	neutral white	4000	2480	217	3455	208	4700	197	6760	182	8675	170	
WU-M-631-SA-750	573223	cool white	5000	2445	214	3405	205	4635	195	6670	180	8555	168	

On account of the complex manufacturing process of the modules, the above values only represent statistical variables.

The values do not necessarily correspond exactly to the actual parameters of every single product, which can vary from the typical specification. * Measurement tolerance of luminous flux: $\pm 7\%$ | ** Measurement tolerance CRI: ± 2

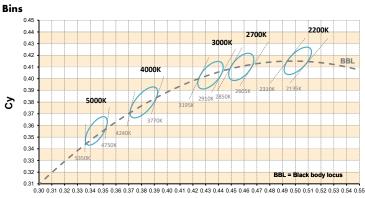
Optical Characteristics


at $t_p = 60 \, ^{\circ}\text{C}$, $CRI^{**} \ge 80$

Туре	Ref. No.	Colour	Correl.	Luminous flux* (lm) and typ. efficiency (lm/W)										
			colour	350 mA		500 mA		700 mA		1050 mA		1400 mA		
			temp.	typ.	typ.	typ.	typ.	typ.	typ.	typ.	typ.	typ.	typ.	
			K	lm	lm/W	lm	lm/W	lm	lm/W	lm	lm/W	lm	lm/W	
WU-M-631-SA-830	on request	warm white	3000	2105	184	2935	176	3995	168	5745	155	7365	144	
WU-M-631-SA-840	573142	neutral white	4000	2245	196	3125	188	4250	178	6115	165	7840	154	

On account of the complex manufacturing process of the modules, the above values only represent statistical variables.

The values do not necessarily correspond exactly to the actual parameters of every single product, which can vary from the typical specification. * Measurement tolerance of luminous flux: $\pm 7\%$ | ** Measurement tolerance CRI: ± 2


Mechanical Dimensions

Typical Light Distribution Curve

Data are available in .ldt format for download under www.vossloh-schwabe.com. I (cd/klm)

Сх

The values contained in this data sheet can change due to technical innovations. Any such changes will be made without separate notification.

Assembly and Safety Information

Installation must be carried out under observation of the relevant regulations and standards. The LED modules are designed for operation within a casing or luminaire. Safety regulations acc. to EN 60598 has to be observed. Installation must be carried out in a voltage-free state (i.e.disconnection from the mains).

- LED built-in modules must not be subjected to any undue mechanical stress, e. g.:
 - handle LED modules carefully
 - avoid shear and compressive forces onto
 - the optics during handling and installation
 - avoid vibrations of more than 2 kHz, 40 G
- The module must be fixed onto a thermally conductive surface with 2 to 3 M3 screws (respectively M4). Max. allowed torque for M3: 0.5 Nm and M4: 1.2 Nm
- The wiring can be done by solid or stranded wires having a cross section of 0.2-0.75 mm²; stripped length of lead ends of 7-9 mm. For inserting/ removing stranded wires press lightly on the push button.
- When installing/screwing the module into a luminaire, please ensure
 that the cables are not squeezed between luminaire/heat sink and LED
 module. Also ensure that the mounting surface is clean and flat. For a
 reliable thermal attachment, we recommend the mounting surface flatness
 of ≤ 0.2 mm
- Safe operation only possible by the use of external constant current sources (I_{max.} see table "Electrical Characteristics").
- Operation is dependent on constant current drivers that should provide the following protective measures:
 - short-circuit protection
 - overload protection
 - overheating protection
- Please ensure the correct polarity of the leads prior to commissioning. Reversed polarity can destroy the modules.
- The maximum output of the power supply must be observed.
- For optimal load of used constant current driver the modules can only be connected in series. The quantity of LED modules is limited by the sum of forward voltage and the capacity of used constant current driver. Safety regulations acc. to EN 60598 has to be observed if the sum of forward voltage exceed the permitted touchable value.
- The clearance and creepage distances of LED modules
 WU-M-631-SA are designed for working voltages up to 500 V DC
 (basic insulation) acc. to EN 62031/EN 60598.
- If a system consists of multiple LED Linear Allround modules connected to a single driver, only one module will be monitored by the NTC. That means that one module is in "master" mode operated and the rest are operated in "slave" mode.
- Please ensure standard ESD (electrostatic discharge) protection measures are employed when handling and installing LED modules. Electrostatic discharge can damage LEDs.

- To ensure problem-free operation, the specified maximum temperature at
 the t_c and t_p point (see "Operating Life") must be observed
 (measured in accordance with EN 60598-1). To satisfy this point, it is
 necessary to put measures in place to ensure any heat is
 dissipated from the LED module to the environment.
- To ensure good thermal contact, it is recommended to use proper thermal interface material (e.g. thermal paste, phase change or thermal pads).
- When mounting LED Linear Allround modules directly on the luminaire housing, we reccommend to use aluminum of at least 3 mm thickness.
 Thicker material will improve the heatflow through the luminaire, resulting in a lower t_p temperature on the module itself.
- Use anodised or painted surfaces rather than blank surfaces to enhance the heat-transfer via thermal radiation.
- To ensure problem-free operation, the specified maximum temperature
 at the t_c and t_p point (see "Operating Life") must be observed (and measured in accordance with EN 60598-1). To satisfy this point, it may be
 necessary to put measures in place to ensure any heat is dissipated from
 the PCB to the environment.
- Try to limit as far as possible the number of thermal interfaces in the primary heat path towards ambient air. For the primary heat path use solely materials with high thermal conductivity (e.g. aluminum).
- The LED Linear Allround modules are built-in modules and have no IP-classification (IPOO). They are not designed for operation in "open air". In the event of outdoor applications or applications in damp locations, care must be taken to protect LED assembly modules against humidity, splashes and jets of water. Any corrosion damage resulting from humidity or contact with condensation will not be recognised as a defect or manufacturing fault. LED assembly modules are not specially protected against foreign bodies or dust. Depending on the type of application, further protection must be ensured to prevent dust and foreign bodies from entering.
- A parallel connection of the modules is not allowed.
- Operating LED modules in the presence of certain chemical substances or in chemically enriched (aggressive) environments can impair module functionality or even cause total module failure.
 Detailed information can be found in our "Chemical Incompatibility" PDF on our website www.vossloh-schwabe.com
- The photobiological safety of the LED modules must be classified into risk groups in accordance with EN 62471: 2008.
 - general lighting exempt group: WU-M-631-SA
 - other applications
 risk group 2: WU-M-631-SA

Assessment in acc. with IEC/TR 62778:

Given a clearance of more than d_{min} , within which the lighting intensity limit of E_{thr} = 900 lx is attained, the classification goes down to Risk Group 1.

The values contained in this data sheet can change due to technical innovations. Any such changes will be made without separate notification.

Applied Standards

EN 62031

LED modules for general lighting – Safety specifications

EN 62471

Photobiological safety of lamps and lamp systems

Product Guarantee

- 5 years
- The conditions for the Product Guarantee of the Vossloh-Schwabe Group shall apply as published on our homepage (www.vossloh-schwabe.com).

We will be happy to send you these conditions upon request.